legendre_decomp#
Submodules#
Classes#
Functions#
Package Contents#
- legendre_decomp.LD(X, B=None, order=2, n_iter=10, lr=1.0, eps=1e-05, error_tol=1e-05, ngd=True, ngd_lstsq=False, verbose=True, gpu=True, exit_abs=False, dtype=None)#
Compute many-body tensor approximation.
- Parameters:
X (numpy.typing.NDArray[numpy.float64]) – Input tensor.
B (numpy.typing.NDArray[numpy.intp] | list[tuple[int, Ellipsis]] | None) – B tensor.
order (int) – Order of default tensor B, if not provided.
n_iter (int) – Maximum number of iteration.
lr (float) – Learning rate.
eps (float) – (see paper).
error_tol (float) – KL divergence tolerance for the iteration.
ngd (bool) – Use natural gradient.
ngd_lstsq (bool) – Use natural gradient conputed by lstsq to avoid singular matrix.
verbose (bool) – Print debug messages.
gpu (bool) – Use GPU (CUDA or ROCm depending on the installed CuPy version).
exit_abs (bool) – Previous implementation (wrongly?) uses kl- kl_prev as iteration exit criterion. Use abs(kl - kl_prev) instead.
dtype (numpy.dtype | None) – By default, the data-type is inferred from the input data.
- Returns:
KL divergence history. scaleX: Scaled X tensor. Q: Q tensor. theta: Theta.
- Return type:
all_history_kl
- legendre_decomp.LD_MBA(X, I=None, order=2, n_iter=100, lr=1.0, eps=1e-05, error_tol=1e-05, init_theta=None, init_theta_mask=None, ngd=True, ngd_lstsq=True, verbose=True, gpu=True, dtype=None)#
Compute many-body tensor approximation.
- Parameters:
X (numpy.typing.NDArray[numpy.float64]) – Input tensor.
I (List[Tuple[int, Ellipsis]] | None) – A list of pairs of indices that represent slices with nonzero elements in the parameter tensor. e.g. [(0,1),(2,),(1,3)]
n_iter (int) – Maximum number of iteration.
lr (float) – Learning rate.
eps (float) – (see paper).
error_tol (float) – KL divergence tolerance for the iteration.
ngd (bool) – Use natural gradient.
verbose (bool) – Print debug messages.
order (int)
init_theta (numpy.typing.NDArray[numpy.float64] | None)
init_theta_mask (numpy.typing.NDArray[numpy.float64] | None)
gpu (bool)
dtype (numpy.dtype | None)
- Returns:
KL divergence history. scaleX: Scaled X tensor. Q: Q tensor. theta: Theta.
- Return type:
all_history_kl
- class legendre_decomp.LDComponent#
- I: List[Tuple[int, Ellipsis]]#
- theta: numpy.typing.NDArray[numpy.float64] | None = None#
- theta_mask: numpy.typing.NDArray[numpy.float64] | None = None#
- Q: numpy.typing.NDArray[numpy.float64] | None = None#
- gamma: numpy.typing.NDArray[numpy.float64] | None = None#
- pi: float = 1.0#
- legendre_decomp.MixLD_MBA(X, components, n_round=300, n_iter=100, lr=1.0, eps=1e-05, error_tol=1e-05, em_tol=1e-05, ngd=True, ngd_lstsq=True, verbose=True, verbose_ld=True, gpu=True, dtype=None)#
Compute many-body tensor approximation. :param X: Input tensor. :param I: A list of pairs of indices that represent slices with nonzero elements in the parameter tensor.
e.g. [(0,1),(2,),(1,3)]
- Parameters:
n_round (int) – Maximum number of EM rounds.
n_iter (int) – Maximum number of iteration.
lr (float) – Learning rate.
eps (float) – (see paper).
error_tol (float) – KL divergence tolerance for the iteration.
em_tol (float) – KL divergence tolerance for the EM round.
ngd (bool) – Use natural gradient.
verbose (bool) – Print debug messages.
verbose_ld (bool) – Print debug messages.
X (numpy.typing.NDArray[numpy.float64])
components (LDComponent)
gpu (bool)
dtype (numpy.dtype | None)
- Returns:
KL divergence history. scaleX: Scaled X tensor. Q: Q tensor. theta: Theta.
- Return type:
all_history_kl