legendre_decomp#
Submodules#
Functions#
Package Contents#
- legendre_decomp.xp_get(val)#
- legendre_decomp.default_B(shape, order, xp=np)#
Vectorized implementation of the default B tensor.
- Parameters:
shape (Sequence[int]) – Shape of the corresponding X tensor.
order (int) – Order of the B tensor.
xp (ModuleType) – Array module, either numpy (CPU) or cupy (CUDA/GPU)
- Returns:
Default B tensor of specified order.
- Return type:
array-like
- legendre_decomp.kl(P, Q, xp=cp)#
Kullback-Leibler divergence.
- Parameters:
P (numpy.typing.NDArray[numpy.float64]) – P tensor
Q (numpy.typing.NDArray[numpy.float64]) – Q tensor
xp (ModuleType) – Array module, either numpy (CPU) or cupy
- Returns:
KL divergence.
- Return type:
numpy.float64
- legendre_decomp.get_eta(Q, D, xp=cp)#
Eta tensor.
- Parameters:
Q (numpy.typing.NDArray[numpy.float64]) – Q tensor
D (int) – Dimensionality
xp (ModuleType) – Array module, either numpy (CPU) or cupy
- Returns:
Eta tensor.
- Return type:
numpy.typing.NDArray[numpy.float64]
- legendre_decomp.get_h(theta, D, xp=cp)#
H tensor.
- Parameters:
theta (numpy.typing.NDArray[numpy.float64]) – Theta tensor
D (int) – Dimensionality
xp (ModuleType) – Array module, either numpy (CPU) or cupy
- Returns:
Updated theta.
- Return type:
numpy.typing.NDArray[numpy.float64]
- legendre_decomp.LD(X, B=None, order=2, n_iter=10, lr=1.0, eps=1e-05, error_tol=1e-05, ngd=True, ngd_lstsq=False, verbose=True, gpu=True, exit_abs=False, dtype=None)#
Compute many-body tensor approximation.
- Parameters:
X (numpy.typing.NDArray[numpy.float64]) – Input tensor.
B (numpy.typing.NDArray[numpy.intp] | list[tuple[int, Ellipsis]] | None) – B tensor.
order (int) – Order of default tensor B, if not provided.
n_iter (int) – Maximum number of iteration.
lr (float) – Learning rate.
eps (float) – (see paper).
error_tol (float) – KL divergence tolerance for the iteration.
ngd (bool) – Use natural gradient.
ngd_lstsq (bool) – Use natural gradient conputed by lstsq to avoid singular matrix.
verbose (bool) – Print debug messages.
gpu (bool) – Use GPU (CUDA or ROCm depending on the installed CuPy version).
exit_abs (bool) – Previous implementation (wrongly?) uses kl- kl_prev as iteration exit criterion. Use abs(kl - kl_prev) instead.
dtype (numpy.dtype | None) – By default, the data-type is inferred from the input data.
- Returns:
KL divergence history. scaleX: Scaled X tensor. Q: Q tensor. theta: Theta.
- Return type:
all_history_kl